
Hidden Markov Model Cheat Sheet

Barak A. Pearlmutter

(CVS: hmm.tex 1.8)

This document is a “cheat sheet” on Hidden Markov Models (HMMs). It resem-
bles lecture notes, except that it cuts to the chase a little faster by defining terms
and divulging the useful formulas as quickly as possible, in the place of gentle
explanations and intuitions.

1 Notation

HMM:

• states are not observable.
• observations are probabilistic function of state
• state transitions are probabilistic

N : number of hidden states, numbered 1, . . . , N
M : number of output symbols, numbered 1, . . . ,M
T : number of time steps in sequence of states and sequence of output symbols
~q : sequence of states traversed, ~q = (q1, . . . , qt, . . . , qT) where each qt ∈ {1, . . . , N}
~o: observed output symbol sequence, ~o = (o1, . . . , ot, . . . , oT) where ot ∈ {1, . . . ,M}
A: state transition matrix, aij = P (qt+1 = j | qt = i)
B: per-state observation distributions, bi(k) = P (ot = k | qt = i)
~π: initial state distribution, πi = P (q1 = i)
λ: all numeric parameters defining the HMM considered together, λ = (A, B, ~π)
indices: i, j index states; k indexes output symbols; t indexes time

We proceed to review the solutions to the three big HMM problems: finding P (~o |λ),
finding ~q∗ = argmax~q P (~q |~o, λ), and finding λ∗ = argmaxλ P (~o |λ).

2 Probability of sequence of observations

We wish to calculate P (~o |λ).

HMM Cheat Sheet Barak A. Pearlmutter

Definition: αt(i) = P (o1, . . . , ot, qt = i |λ). (In words: the probability of observing
the head of length t of the observations and being in state i after that.)

Initialization: α1(i) = πi bi(o1).

Loop: αt+1(j) =

(N
∑

i=1

αt(i) aij

)

bj(ot+1)

At termination, P (~o |λ) =
N

∑

i=1

αT (i).

Note: complexity is O(N 2T) time, O(NT) space.

Note: calculating the α values is called the “forward algorithm.”

3 Optimal state sequence from observations

Find ~q∗ = argmax~q P (~q |~o, λ), the most likely sequence of hidden states given the
observations.

Note: calculating the most likely sequence of states is called a “Viterbi alignment.”

Definition: βt(i) = P (ot+1, ot+2, . . . , oT | qt = i, λ). (In words: the probability that
starting in state i at time t, then generating the remaining tail of the observations.)

Initialization: βT (i) = 1.

Loop: βt(i) =
N

∑

j=1

aijbj(ot+1)βt+1(j). Calculated backwards: t = T − 1, T − 2, . . . , 1.

Note: calculating the β values is called the “backward algorithm.”

Define:
δt(i) = max

q1,...,qt−1

P (q1, . . . , qt−1, qt = i, o1, . . . , ot |λ).

(In words: the probability of generating the head of length t of observables and
having gone through the most likely states for the first t − 1 steps and ending up
in state i.)

Initialization: δ1(i) = πi bi(o1)

Loop: δt(j) = (max
i
δt−1(i) aij) bj(ot)

Initialization: ψ1(i) = 0

Loop: ψt(j) = argmax
i

δt−1(i) aij

Termination: P ∗ = max
i
δT (i), the probability of generating the entire sequence of

observables via the most probable sequence of states.

2

HMM Cheat Sheet Barak A. Pearlmutter

Termination: q∗T = argmax
i

δT (i), the most probable final state.

Loop to find state sequence (“backtracking”): q∗t = ψt+1(q
∗

t+1)

Note: ψ is written “psi” in English, and pronounced “p’sai.”

3.1 Useful property of α and β

Note that
∑

i

αt(i) βt(i) =
∑

i

P (o1, . . . , ot, qt = i |λ)P (ot+1, ot+2, . . . , oT | qt = i, λ)

=
∑

i

P (o1, . . . , ot, ot+1, ot+2, . . . , oT , qt = i |λ)

=
∑

i

P (~o, qt = i |λ)

= P (~o |λ)

This logic holds for any t, so the given sum should be the same for any t. (The
earlier formula for P (~o |λ) was for the special case t = T since βT (i) = 1.) This
formula thus provides a useful debugging test for HMM programs.

4 Estimate model parameters

Given ~o find λ∗ = argmaxλ P (~o |λ).

Not an analytic solution. Instead, we start with a guess of λ, typically random,
then iterate λ to a local maximum, using an EM algorithm. At each step we “re-
estimate” a new λ, called λ̂, which has an increased probability of generating ~o.
(Or if already at a (possibly local) optimum, the same probability.)

Note: this process is called “Baum-Welch Re-Estimation.”

Typical stopping rule for this re-estimation loop is:

stop when logP (~o | λ̂) − logP (~o |λ) < ε for some small ε

Note: debugging hint, P (~o | λ̂) ≥ P (~o |λ) should always be true.

Definition: γt(i) = P (qt = i |~o, λ). (In words: the probability of having been in state
i at time t.)

γt(i) =
αt(i) βt(i)

P (~o |λ)

3

HMM Cheat Sheet Barak A. Pearlmutter

Definition: ξt(i, j) = P (qt = i, qt+1 = j |~o, λ). (In words: the probability of having
transitioned from state i to j at time t.)

ξt(i, j) =
αt(i) aij bj(ot+1) βt+1(j)

P (~o |λ)

Note:
∑

i γt(i) = 1 and
∑

i

∑

j ξt(i, j) = 1.

Note: ξ is written “xi” in English, and pronounced “k’sai.”

We write “#” to abbreviate the phrase “expected number of times”

state i visited:
T

∑

t=1

γt(i)

transitions from state i to state j is:
T−1
∑

t=1

ξt(i, j)

π̂i =
γ1(i)

∑

j

γ1(j)
= γ1(i)

âij =
transitions state i to state j

transitions from state i
=

T−1
∑

t=1

ξt(i, j)

T−1
∑

t=1

γt(i)

b̂j(k) =
in state j and output symbol k

in state j
=

T
∑

t=1

[ot = k] γt(j)

T
∑

t=1

γt(j)

where we use Knuth notation, [boolean condition] = 1 or 0 depending on whether
boolean condition is true or false.

4.1 Training on multiple sequences

The above is for one output observable sequence ~o. If there are multiple such ob-
servable output sequences, i.e. a training set of them, then the basic variables de-
fined above (α, β, etc) are computed for each of them. Except for the re-estimation
formulas, which need to sum over them as an “outer” sum around the sums shown.

We use a superscript (p) to indicate values computed for observable sequence ~o (p).
Note that λ and N and M are independent of p, but T is not since each string in
the training set might be a different length, T (p) = dim~o(p).

4

HMM Cheat Sheet Barak A. Pearlmutter

The update formulas become:

π̂i =

∑

p

γ
(p)
1 (i)

∑

p

1

âij =
transitions state i to state j

transitions from state i
=

∑

p

T (p)
−1

∑

t=1

ξ
(p)
t (i, j)

∑

p

T (p)
−1

∑

t=1

γ
(p)
t (i)

b̂j(k) =
in state j and output symbol k

in state j
=

∑

p

T (p)
∑

t=1

[o
(p)
t = k] γ

(p)
t (j)

∑

p

T (p)
∑

t=1

γ
(p)
t (j)

5

