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Abstra
t

The blind sour
e separation problem is to extra
t the underlying sour
e signals from a

set of linear mixtures, where the mixing matrix is unknown. This situation is 
ommon,

in a
ousti
s, radio, medi
al signal and image pro
essing, hyperspe
tral imaging, et
.. We

suggest a two-stage separation pro
ess. First, a priori sele
tion of a possibly over
omplete

signal di
tionary (for instan
e a wavelet frame, or a learned di
tionary) in whi
h the sour
es

are assumed to be sparsely representable. Se
ond, unmixing the sour
es by exploiting the

their sparse representability. We 
onsider the general 
ase of more sour
es than mixtures,

but also derive a more eÆ
ient algorithm in the 
ase of a non-over
omplete di
tionary and an

equal numbers of sour
es and mixtures. Experiments with arti�
ial signals and with musi
al

sounds demonstrate signi�
antly better separation than other known te
hniques.
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1 Introdu
tion

In blind sour
e separation an N -
hannel sensor signal x(t) arises from M unknown s
alar

sour
e signals s

i

(t), linearly mixed together by an unknown N �M matrix A, and possibly


orrupted by additive noise �(t)

x(t) = As(t) + �(t) (1)

We wish to estimate the mixing matrix A and the M -dimensional sour
e signal s(t). Many

natural signals 
an be sparsely represented in a proper signal di
tionary

s

i

(t) =

K

X

k=1

C

ik

'

k

(t) (2)

The s
alar fun
tions '

k

(t) are 
alled atoms or elements of the di
tionary. These elements

do not have to be linearly independent, and instead may form an over
omplete di
tionary.

Important examples are wavelet-related di
tionaries (wavelet pa
kets, stationary wavelets,

et
, see for example Chen et al. (1996); Mallat (1998) and referen
es therein), or learned

di
tionaries (Lewi
ki and Sejnowski, 1998; Lewi
ki and Olshausen, 1999; Olshausen and

Field, 1997, 1996). Sparsity means that only a small number of the 
oeÆ
ients C

ik

di�er

signi�
antly from zero.

We suggest a two stage separation pro
ess. First, a priori sele
tion of a possibly over-


omplete signal di
tionary in whi
h the sour
es are assumed to be sparsely representable.

Se
ond, unmixing the sour
es by exploiting their sparse representability.

In the dis
rete time 
ase t = 1; 2; : : : ; T we use matrix notation. X is an N � T matrix,

with the i-th 
omponent x

i

(t) of the sensor signal in row i, S is an M � T matrix with the

signal s

j

(t) in row j, and � is a K �T matrix with basis fun
tion '

k

(t) in row k. Equations

(1) and (2) then take the following simple form

X = AS + � (3)

S = C� (4)

Combining them, we get the following when the noise is small

X � AC�

Our goal therefore 
an be formulated as follows:

Given the sensor signal matrix X and the di
tionary �, �nd a mixing matrix A

and matrix of 
oeÆ
ients C su
h that X � AC� and C is as sparse as possible.

We should mention other problems of sparse representation studied in the literature.

The basi
 problem is to represent sparsely s
alar signal in given di
tionary (see for example

Chen et al. (1996) and referen
es therein). Another problem is to adapt the di
tionary to the

given 
lass of signals

1

(Lewi
ki and Sejnowski, 1998; Lewi
ki and Olshausen, 1999; Olshausen

1

Our di
tionary � may be obtained in this way.
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Figure 1: Sour
es (a and b) are sparse. Mixtures (
 and d) are less sparse.

and Field, 1997). This problem is shown to be equivalent to the problem of blind sour
e

separation, when the sour
es are sparse in time (Lee et al., 1998; Lewi
ki and Sejnowski,

1998). Our problem is di�erent, but we will use and generalize some te
hniques presented

in these works.

Independent Fa
tor Analysis (Attias, 1999) and the Bayesian blind sour
e separation

(Rowe, 1999) also 
onsider the 
ase of more sour
es than mixtures. In our approa
h we

take an advantage, when the sour
es are sparsely representable. In extreme 
ase, when

the de
omposition 
oeÆ
ients are very sparse, the separation be
omes pra
ti
ally ideal (see

Se
tion 3.2 below, and the six 
utes example in Zibulevsky et al. (2000)). Nevertheless

detailed 
omparison of the methods on real-world signals remains open for future resear
h.

Our paper is organized as follows. In Se
tion 2 we give some motivating examples, whi
h

demonstrate how sparsity helps to separate sour
es. Se
tion 3 gives the problem formula-

tion in probabilisti
 framework, and presents the maximum a posteriori approa
h, whi
h is

appli
able to the 
ase of more sour
es than mixtures. In Se
tion 4 we derive another ob-

je
tive fun
tion, whi
h provides more robust 
omputations when there are an equal number

of sour
es and mixtures. Se
tion 5 presents sequential sour
e extra
tion using quadrati


programming with non-
onvex quadrati
 
onstraints. Finally, in Se
tion 6 we derive a faster

method for non-over
omplete di
tionaries and demonstrate high-quality separation of syn-

theti
ally mixed musi
al sounds.

2 Separation of Sparse Signals

In this se
tion we present two examples whi
h demonstrate how sparsity of sour
e signals in

the time domain helps to separate them. Many real-world signals have sparse representations

in a proper signal di
tionary, but not in the time domain. The intuition here 
arries over to

that situation, as shown in Se
tion 3.1.
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(a)

(b)

Figure 2: (a) Imperfe
t separation. Sin
e the se
ond sour
e is not 
ompletely removed, the

total number of non-zero samples remains �ve. (b) Perfe
t separation. When the sour
e is

re
overed perfe
tly, the number of non-zero samples drops to two and the obje
tive fun
tion

a
hieves its minimum.

Example: 2 sour
es and 2 mixtures. Two syntheti
 sour
es are shown in Figure 1(a,b).

The �rst sour
e has two non-zero samples, and the se
ond has three. The mixtures, shown

in Figure 1(
,d) are less sparse: they have �ve non-zero samples ea
h. One 
an use this

observation to re
over the sour
es. For example, we 
an express one of the sour
es as

e

s

i

(t) = x

1

(t) + �x

2

(t)

and 
hose � su
h as to minimize the number of non-zero samples k

e

s

i

k

0

, i.e. the l

0

norm of

s

i

.

This obje
tive fun
tion yields perfe
t separation. As shown in Figure 2(a), when � is

not optimal the se
ond sour
e interferes, and the total number of non-zero samples remains

�ve. Only when the �rst sour
e is re
overed perfe
tly, as in Figure 2(b), does the number of

non-zero samples drop to two, and the obje
tive fun
tion a
hieve its minimum.

Note that the fun
tion k

e

s

i

k

0

is dis
ontinuous and may be diÆ
ult to optimize. It is

also very sensitive to noise: even a tiny bit of noise would make all the samples non-zero.

Fortunately in many 
ases the l

1

norm k

e

s

i

k

1

is a good substitute for this obje
tive fun
tion.

In this example, it too yields perfe
t separation.

Example: 3 sour
es and 2 mixtures. The signals are presented in Figure 3.

These sour
es have about 10% non-zero samples. The non-zero samples have random

positions, and are zero-mean unit-varian
e Gaussian distributed in amplitude. Figure 4

shows a s
atter plot of the mixtures. The dire
tions of the 
olumns of mixing matrix are


learly visible. This phenomena 
an be used in 
lustering approa
hes to sour
e separation

(Pajunen et al., 1996; Zibulevsky et al., 2000). In this work we will explore a maximum a

posteriori approa
h.

3 Probabilisti
 Framework

In order to derive a maximum a posteriori solution, we 
onsider the blind sour
e separation

problem in a probabilisti
 framework (Belou
hrani and Cardoso, 1995; Pearlmutter and

Parra, 1996). Suppose that the 
oeÆ
ients C

ik

in a sour
e de
omposition (4) are independent

random variables with a probability density fun
tion (pdf) of an exponential type

p

i

(C

ik

) / exp��

i

h(C

ik

) (5)
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Figure 3: Top three panels: sparse sour
es (sparsity is 10%). Bottom two panels: mixtures.

This kind of distribution is widely used for modeling sparsity (Lewi
ki and Sejnowski, 1998;

Olshausen and Field, 1997). A reasonable 
hoi
e of h(
) may be

h(
) = j
j

1=



 � 1 (6)

or a smooth approximation thereof. Here we will use a family of 
onvex smooth approxima-

tions to the absolute value

h

1

(
) = j
j � log(1 + j
j) (7)

h

�

(
) = �h

1

(
=�) (8)

with � a proximity parameter: h

�

(
)! j
j as �! 0

+

.

We also suppose a priori that the mixing matrix A is uniformly distributed over the

range of interest, and that the noise �(t) in (3) is a spatially and temporally un
orrelated

Gaussian pro
ess

2

with zero mean and varian
e �

2

.

3.1 Maximum a posteriori approa
h

We wish to maximize the posterior probability

max

A;C

P (A;CjX) / max

A;C

P (XjA;C)P (A)P (C) (9)

2

The assumption that the noise is white is for simpli
ity of exposition, and 
an be easily removed.
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Figure 4: S
atter plot of two sensors. Three distinguished dire
tions, whi
h 
orrespond to

the 
olumns of the mixing matrix A, are visible.

where P (XjA;C) is the 
onditional probability of observing X given A and C. Taking into

a

ount (3), (4), and the white Gaussian noise, we have

P (XjA;C) /

Y

i;t

exp�

(X

it

� (AC�)

it

)

2

2�

2

(10)

By the independen
e of the 
oeÆ
ients C

jk

and (5), the prior pdf of C is

P (C) /

Y

j;k

exp(��

j

h(C

jk

)) (11)

If the prior pdf P (A) is uniform, it 
an be dropped

3

from (9). In this way we are left with

the problem

max

A;C

P (XjA;C)P (C): (12)

By substituting (10) and (11) into (12), taking the logarithm, and inverting the sign, we

obtain the following optimization problem

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j;k

�

j

h(C

jk

) (13)

where kAk

F

=

q

P

i;j

A

2

ij

is the Frobenius matrix norm.

One 
an 
onsider this obje
tive as a generalization of Olshausen and Field (1996, 1997)

by in
orporating the matrix �, or as a generalization of Chen et al. (1996) by in
luding the

matrix A. One problem with su
h a formulation is that it 
an lead to the degenerate solution

3

Otherwise, if P (A) is some other known fun
tion, we should use (9) dire
tly.
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C = 0 and A = 1. We 
an over
ome this diÆ
ulty in various ways. The �rst approa
h is

to for
e ea
h row A

i

of the mixing matrix A to be bounded in norm,

kA

i

k � 1 i = 1; : : : ; N: (14)

The se
ond way is to restri
t the norm of the rows C

j

from below

kC

j

k � 1 j = 1; : : : ;M: (15)

A third way is to reestimate the parameters �

j

based on the 
urrent values of C

j

. For

example, this 
an be done using sample varian
e as follows: for a given fun
tion h(�) in the

distribution (5), express the varian
e of C

jk

as a fun
tion f

h

(�). An estimate of � 
an be

obtained by applying the 
orresponding inverse fun
tion to the sample varian
e,

^

�

j

= f

�1

h

(K

�1

X

k

C

2

jk

) (16)

In parti
ular, when h(
) = j
j, var(
) = 2�

�2

and

^

�

j

=

2

q

K

�1

P

k

C

2

jk

(17)

Substituting h(�) and

^

� into (13), we obtain

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(18)

This obje
tive fun
tion is invariant to a res
aling of the rows of C 
ombined with a 
orre-

sponding inverse res
aling of the 
olumns of A.

3.2 Experiment: more sour
es than mixtures

This experiment demonstrates that sour
es whi
h have very sparse representations 
an be

separated almost perfe
tly, even when they are 
orrelated and the number of samples is

small.

We used the standard wavelet pa
ket di
tionary with the basi
 wavelet symmlet-8. When

the signal length is 64 samples, this di
tionary 
onsists of 448 atoms i.e. it is over
omplete

by a fa
tor of seven. Examples of atoms and their images in the time-frequen
y phase

plane (Coifman and Wi
kerhauser, 1992; Mallat, 1998) are shown in Figure 5. We used the

ATOMIZER (Chen et al., 1995) and WAVELAB (Bu
kheit et al., 1995) MATLAB pa
kages

for fast multipli
ation by � and �

T

.

We 
reated three very sparse sour
es (Figure 6(a)), ea
h 
omposed of only two or three

atoms. The �rst two sour
es have signi�
ant 
ross-
orrelation, equal to 0.34, whi
h makes

separation diÆ
ult for 
onventional methods. Two syntheti
 sensor signals (Figure 6(b)) were

obtained as linear mixtures of the sour
es. In order to measure the a

ura
y of separation, we
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Figure 5: Examples of atoms: time-frequen
y phase plane (left) and time plot (right.)

normalized the original sour
es with kS

j

k

2

= 1, and the estimated sour
es with k

e

S

j

k

2

= 1.

The error was 
omputed as

Error =

k

e

S

j

� S

j

k

2

kS

j

k

2

� 100% (19)

We tested two methods with this data. The �rst method used the obje
tive fun
tion (13)

and the 
onstraints (15), while the se
ond method used the obje
tive fun
tion (18). We used

PBM (Ben-Tal and Zibulevsky, 1997) for the 
onstrained optimization. The un
onstrained

optimization was done using the method of 
onjugate gradients, with the TOMLAB pa
k-

age (Holmstrom and Bjorkman, 1999). The same tool was used by PBM for its internal

un
onstrained optimization.

We used h

�

(�) de�ned by (7) and (8) with � = 0:01 and �

2

= 0:0001 in the obje
tive

fun
tion. The resulting errors of the re
overed sour
es were 0.09% and 0.02% by the �rst

and the se
ond methods, respe
tively. The estimated sour
es are shown in Figure 6(
). They

are visually indistinguishable from the original sour
es in Figure 6(a).

It is important to re
ognize the 
omputational diÆ
ulties of this approa
h. First, the

obje
tive fun
tions seem to have multiple lo
al minima. For this reason, reliable 
onvergen
e

was a
hieved only when the sear
h started randomly within 10%{20% distan
e to the a
tual

solution (in order to get su
h an initial guess one 
an use a 
lustering algorithm, as in

Pajunen et al. (1996) or Zibulevsky et al. (2000).)

Se
ond, the method of 
onjugate gradients requires a few thousand iterations to 
onverge,

whi
h takes about 5 min on a 300 MHz AMD K6-II even for this very small problem.

(On the other hand, preliminary experiments with a trun
ated Newton method have been

en
ouraging, and we anti
ipate that this will redu
e the 
omputational burden by an order

of magnitude or more. Also Paul Tseng's blo
k 
oordinate des
ent method (unpublished

manus
ript) may be appropriate.) Below we present a few other approa
hes whi
h help to

stabilize and a

elerate the optimization.



NC 2079, Zibulevsky, Sparse De
omposition 8

(a) Sour
es

(b) Mixtures

(
) Separated sour
es

Figure 6: Sour
es, mixtures and re
onstru
ted sour
es, in both time-frequen
y phase plane

(left) and time domain (right).

4 Equal number of sour
es and sensors: more robust

formulations

The main diÆ
ulty in a maximization problem like (13) is the bilinear term AC�, whi
h

destroys the 
onvexity of the obje
tive fun
tion and makes 
onvergen
e unstable when opti-

mization starts far from the solution. In this se
tion we 
onsider more robust formulations

for the 
ase when the number of sensors is equal to the number of sour
es, N =M , and the

mixing matrix is invertible, W = A

�1

.

When the noise is small and the matrix A is far from singular, WX gives a reasonable

estimate of the sour
e signals S. Taking into a

ount (4), we obtain a least squares term

kC��WXk

2

F

, so the separation obje
tive may be written

min

W;C

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (20)

We also need to add a 
onstraint whi
h enfor
es the non-singularity of W . For example,

we 
an restri
t its minimal singular value r

min

(W ) from below,

r

min

(W ) � 1 (21)

It 
an be shown that in the noiseless 
ase, � � 0, the problem (20){(21) is equivalent to the

maximum a posteriori formulation (13) with the 
onstraint kAk

2

� 1: Another possibility
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(a) Sour
es

(b) Mixtures

(
) Separated sour
es

Figure 7: Sour
es, mixtures and re
onstru
ted sour
es, in both time-frequen
y phase plane

(left) and time domain (right).

for ensuring the non-singularity of W is to subtra
t K log j detW j from the obje
tive

min

W;C

�K log j detW j+

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (22)

whi
h (Bell and Sejnowski, 1995; Pearlmutter and Parra, 1996) 
an be viewed as a maximum

likelihood term.

When the noise is zero and � is the identity matrix, we 
an substitute C = WX and

obtain the BS Infomax obje
tive (Bell and Sejnowski, 1995)

min

W

�K log j detW j+

X

j;k

�

j

h((WX)

jk

) (23)

Experiment: equal numbers of sour
es and sensors. We 
reated two sparse sour
es

(Figure 7, top) with strong 
ross-
orrelation of 0.52. Separation by minimization of the

obje
tive fun
tion (22) gave an error of 0.23%. Robust 
onvergense was a
hieved when we

started from random uniformly distributed points in C and W .

For 
omparison we tested the JADE (Cardoso, 1999a), FastICA (Hyv�arinen, 1999) and

BS Infomax (Bell and Sejnowski, 1995; Amari et al., 1996) algorithms on the same signals.

All three 
odes were obtained from publi
 web sites (Cardoso, 1999b; Hyv�arinen, 1998;

Makeig, 1999) and were used with default setting of all parameters. The resulting relative

errors (Figure 8) 
on�rm the signi�
ant superiority of the sparse de
omposition approa
h.

This still takes a few thousands 
onjugate gradient steps to 
onverge (about 5 min on a

300 MHz AMD K6). For 
omparison, the tuned publi
 implementations of JADE, FastICA

and BS Infomax take only a few se
onds. Below we 
onsider some options for a

eleration.
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    BS
Infomax

Fast
ICA

Equation
      22

(29%)

(57%)

(27%)

(0.2%)

Cardoso’s
   JADE

Figure 8: Per
ent relative error of separation of the arti�
ial sparse sour
es re
overed by (1)

JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Equation 22.

5 Sequential Extra
tion of Sour
es via Quadrati
 Pro-

gramming

Let us 
onsider �nding the sparsest signal that 
an be obtained by a linear 
ombination of the

sensor signals s = w

T

X. By sparsity we mean the ability of the signal to be approximated

by a linear 
ombination of a small number of di
tionary elements '

k

, as s � 


T

�. This leads

to the obje
tive

min

w;


1

2

k


T

�� w

T

Xk

2

2

+ �

X

k

h(


k

); (24)

where the term

P

k

h(


k

) may be 
onsidered a penalty for non-sparsity. In order to avoid the

trivial solution of w = 0 and 
 = 0 we need to add a 
onstraint that separates w from zero.

It 
ould be, for example,

kwk

2

2

� 1 ; (25)

A similar 
onstraint 
an be used as a tool to extra
t all the sour
es sequentially: the new

separation ve
tor w

j

should have a 
omponent of unit norm in the subspa
e orthogonal to

the previously extra
ted ve
tors w

1

; : : : ; w

j�1

k(I � P

j�1

)w

j

k

2

2

� 1 ; (26)

where P

j�1

is an orthogonal proje
tor onto Spanfw

1

; : : : ; w

j�1

g.

When h(


k

) = j


k

j we 
an use the standard substitution


 = 


+

� 


�

; 


+

� 0 ; 


�

� 0


̂ =

 




+




�

!

and

^

� =

 

�

��

!

that transforms (24) and (26) into the quadrati
 program

min

w;
̂

1

2

k
̂

T

^

�� w

T

Xk

2

2

+ �e

T


̂

subje
t to: kwk

2

2

� 1 ; 
̂ � 0
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where e is a ve
tor of ones.

6 Fast Solution in Non-over
omplete Di
tionaries

In important appli
ations (Tang et al., 1999, 2000a,b), the sensor signals may have hundreds

of 
hannels and hundreds of thousands of samples. This may make separation 
omputa-

tionally diÆ
ult. Here we present an approa
h whi
h 
ompromises between statisti
al and


omputational eÆ
ien
y. In our experien
e this approa
h provides high quality of separation

in reasonable time.

Suppose that the di
tionary is \
omplete," i.e. it forms a basis in the spa
e of dis
rete

signals. This means that the matrix � is square and non-singular. As examples of su
h a

di
tionary one 
an think of the Fourier basis, Gabor basis, various wavelet-related bases, et
.

We 
an also obtain an \optimal" di
tionary by learning from given family of signals (Lewi
ki

and Sejnowski, 1998; Lewi
ki and Olshausen, 1999; Olshausen and Field, 1997, 1996).

Let us denote the dual basis

	 = �

�1

(27)

and suppose that 
oeÆ
ients of de
omposition of the sour
es

C = S	 (28)

are sparse and independent. This assumption is reasonable for properly 
hosen di
tionaries,

although of 
ourse we would lose the advantages of over
ompleteness.

Let Y be the de
omposition of the sensor signals

Y = X	 (29)

Multiplying both sides of (3) by 	 from the right and taking into a

ount (28) and (29), we

obtain

Y = AC + � ; (30)

where � = �	 is the de
omposition of the noise. Here we 
onsider an \easy" situation, where

� is white, whi
h assumes that 	 is orthogonal. We 
an see that all the obje
tive fun
tions

from the se
tions 3.1{5 remain valid if we substitute the identity matrix for � and repla
e the

sensor signal X by its de
omposition Y . For example, the maximum a posteriori obje
tives

(13) and (18) are transformed into

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j;k

�

j

h(C

jk

) (31)

and

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(32)

The obje
tive (22) be
omes

min

W;C

�K log j detW j+

1

2

kC �WY k

2

F

+ �

X

j;k

�

j

h(C

jk

) (33)
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Sour
es Mixtures Separated

Figure 9: Separation of musi
al re
ordings taken from 
ommer
ial digital audio CDs (�ve

se
ond fragments).

In this 
ase we 
an further assume that the noise is zero, substitute C = WY , and obtain

the BS Infomax obje
tive (Bell and Sejnowski, 1995)

min

W

�K log j detW j+

X

j;k

�

j

h((WY )

jk

) (34)

Also other known methods (for example, Lee et al. (1998); Lewi
ki and Sejnowski (1998)),

whi
h normally assume sparsity of sour
e signals, may be dire
tly applied to the de
omposi-

tion Y of the sensor signals. This may be more eÆ
ient than the traditional approa
h, and

the reason is obvious: typi
ally, a properly 
hosen de
omposition gives signi�
antly higher

sparsity for the transformed 
oeÆ
ients than for the raw signals. Furthermore, independen
e

of the 
oeÆ
ients is a more realisti
 assumption than independen
e of the raw signal samples.

Experiment: musi
al sounds. In our experiments we arti�
ially mixed seven 5-se
ond

fragments of musi
al sound re
ordings taken from 
ommer
ial digital audio CDs. Ea
h of

them in
luded 40k samples after down-sampling by a fa
tor of 5. (Figure 9).

The easiest way to perform sparse de
omposition of su
h sour
es is to 
ompute a spe
tro-

gram, the 
oeÆ
ients of a time-windowed dis
rete Fourier transform. (We used the fun
tion

SPECGRAM from the MATLAB signal pro
essing toolbox with a time window of 1024

samples.) The sparsity of the spe
trogram 
oeÆ
ients (the histogram in Figure 10, right) is

mu
h higher then the sparsity of the original signal (Figure 10, left)

In this 
ase Y (29) is a real matrix, with separate entries for the real and imaginary


omponents of ea
h spe
trogram 
oeÆ
ient of the sensor signals X. We used the obje
tive

fun
tion (34) with �

j

= 1 and h

�

(�) de�ned by (7) and (8) with the parameter � = 10

�4

.

Un
onstrained minimization was performed by a BFGS Quasi-Newton algorithm (MATLAB

fun
tion FMINU.)
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Figure 10: Histogram of sound sour
e values (left) and spe
trogram 
oeÆ
ients (right), shown

with linear y-s
ale (top), square root y-s
ale (
enter) and logarithmi
 y-s
ale (bottom).

This algorithm separated the sour
es with a relative error of 0.67% for the least well

separated sour
e (error 
omputed a

ording to (19).) We also applied the BS Infomax

algorithm (Bell and Sejnowski, 1995) implemented in Makeig (1999) to the spe
trogram


oeÆ
ients Y of the sensor signals. Separation errors were slightly larger, at 0.9%, but the


omputing time was improved (from 30 min for BFGS to 5 min for BS Infomax).

For 
omparison we tested the JADE (Cardoso, 1999a,b), FastICA (Hyv�arinen, 1999,

1998) and BS Infomax algorithms on the raw sensor signals. Resulting relative errors (Fig-

ure 11) 
on�rm the signi�
ant (by a fa
tor of more than 10) superiority of the sparse de-


omposition approa
h.

The method des
ribed in this se
tion, whi
h 
ombines a spe
trogram transform with the

BS Infomax algorithm, is in
luded in the ICA/EEG toolbox (Makeig, 1999).

7 Future resear
h

We should mention an alternative to the maximum a posteriori approa
h (12). Considering

the mixing matrix A as a parameter, we 
an estimate it by maximizing the probability of

the observed signal X

max

A

�

P (XjA) =

Z

P (XjA;C)P (C) dC

�

The integral over all possible 
oeÆ
ients C may be approximated, for example, by Monte-

Carlo sampling or by a mat
hing Gaussian, in the spirit of Lewi
ki and Sejnowski (1998);

Lewi
ki and Olshausen (1999) or by variational methods (Jordan et al., 1999). It would be

interesting to 
ompare these possibility to the other methods presented in this paper.

Another important dire
tion is towards the problem of simultaneous blind de
onvolution

and separation, as in Lambert (1996). In this 
ase the matri
es A and W will have linear
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Cardoso’s
   JADE

Fast
ICA

   BS
Infomax

Spect−
Infomax

Spect−
BFGS

(8.8%) (8.6%)

(7.1%)

(0.9%) (0.67%)

Figure 11: Per
ent relative error of separation of seven musi
al sour
es re
overed by (1)

JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Infomax, applied to the spe
trogram


oeÆ
ients, (5) BFGS minimization of the obje
tive (34) with the spe
trogram 
oeÆ
ients.

�lters as an elements, and multipli
ation by an element 
orresponds to 
onvolution. Even in

this matrix-of-�lters 
ontext, most of the formulae in this paper remain valid.

8 Con
lusions

We showed that the use of sparse de
omposition in a proper signal di
tionary provides high-

quality blind sour
e separation. The maximum a posteriori framework gives the most general

approa
h, whi
h in
ludes the situation of more sour
es than sensors. Computationally more

robust solutions 
an be found in the 
ase of an equal number of sour
es and sensors. We 
an

also extra
t the sour
es sequentially using quadrati
 programming with non-
onvex quadrati



onstraints. Finally, mu
h faster solutions may be obtained by using non-over
omplete

di
tionaries. Our experiments with arti�
ial signals and digitally mixed musi
al sounds

demonstrate a high quality of sour
e separation, 
ompared to other known te
hniques.
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