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Abstract

The blind source separation problem is to extract the underlying source signals from a
set of linear mixtures, where the mixing matrix is unknown. This situation is common,
in acoustics, radio, medical signal and image processing, hyperspectral imaging, etc.. We
suggest a two-stage separation process. First, a prior: selection of a possibly overcomplete
signal dictionary (for instance a wavelet frame, or a learned dictionary) in which the sources
are assumed to be sparsely representable. Second, unmixing the sources by exploiting the
their sparse representability. We consider the general case of more sources than mixtures,
but also derive a more efficient algorithm in the case of a non-overcomplete dictionary and an
equal numbers of sources and mixtures. Experiments with artificial signals and with musical
sounds demonstrate significantly better separation than other known techniques.
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1 Introduction

In blind source separation an N-channel sensor signal x(¢) arises from M unknown scalar
source signals s;(t), linearly mixed together by an unknown N x M matrix A, and possibly
corrupted by additive noise £(t)

(t) = As(t) +£(1) (1)

We wish to estimate the mixing matrix A and the M-dimensional source signal s(¢). Many
natural signals can be sparsely represented in a proper signal dictionary

si(t) = kz_: Cir, pr(t) (2)

The scalar functions g (t) are called atoms or elements of the dictionary. These elements
do not have to be linearly independent, and instead may form an overcomplete dictionary.
Important examples are wavelet-related dictionaries (wavelet packets, stationary wavelets,
etc, see for example Chen et al. (1996); Mallat (1998) and references therein), or learned
dictionaries (Lewicki and Sejnowski, 1998; Lewicki and Olshausen, 1999; Olshausen and
Field, 1997, 1996). Sparsity means that only a small number of the coefficients Cj differ
significantly from zero.

We suggest a two stage separation process. First, a priori selection of a possibly over-
complete signal dictionary in which the sources are assumed to be sparsely representable.
Second, unmixing the sources by exploiting their sparse representability.

In the discrete time case t = 1,2,...,T we use matrix notation. X is an N x T matrix,
with the i-th component z;(t) of the sensor signal in row 4, S is an M x T matrix with the
signal s;(¢) in row j, and ® is a K x T matrix with basis function ¢ () in row k. Equations
(1) and (2) then take the following simple form

X = AS+¢ (3)
S = Cd (4)

Combining them, we get the following when the noise is small
X~ ACD
Our goal therefore can be formulated as follows:

Given the sensor signal matriz X and the dictionary ®, find a mizing matriz A
and matrixz of coefficients C' such that X ~ AC® and C' is as sparse as possible.

We should mention other problems of sparse representation studied in the literature.
The basic problem is to represent sparsely scalar signal in given dictionary (see for example
Chen et al. (1996) and references therein). Another problem is to adapt the dictionary to the
given class of signals' (Lewicki and Sejnowski, 1998; Lewicki and Olshausen, 1999; Olshausen

'Our dictionary ® may be obtained in this way.
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Figure 1: Sources (a and b) are sparse. Mixtures (c and d) are less sparse.

and Field, 1997). This problem is shown to be equivalent to the problem of blind source
separation, when the sources are sparse in time (Lee et al., 1998; Lewicki and Sejnowski,
1998). Our problem is different, but we will use and generalize some techniques presented
in these works.

Independent Factor Analysis (Attias, 1999) and the Bayesian blind source separation
(Rowe, 1999) also consider the case of more sources than mixtures. In our approach we
take an advantage, when the sources are sparsely representable. In extreme case, when
the decomposition coefficients are very sparse, the separation becomes practically ideal (see
Section 3.2 below, and the six flutes example in Zibulevsky et al. (2000)). Nevertheless
detailed comparison of the methods on real-world signals remains open for future research.

Our paper is organized as follows. In Section 2 we give some motivating examples, which
demonstrate how sparsity helps to separate sources. Section 3 gives the problem formula-
tion in probabilistic framework, and presents the mazximum a posteriori approach, which is
applicable to the case of more sources than mixtures. In Section 4 we derive another ob-
jective function, which provides more robust computations when there are an equal number
of sources and mixtures. Section 5 presents sequential source extraction using quadratic
programming with non-convex quadratic constraints. Finally, in Section 6 we derive a faster
method for non-overcomplete dictionaries and demonstrate high-quality separation of syn-
thetically mixed musical sounds.

2 Separation of Sparse Signals

In this section we present two examples which demonstrate how sparsity of source signals in
the time domain helps to separate them. Many real-world signals have sparse representations
in a proper signal dictionary, but not in the time domain. The intuition here carries over to
that situation, as shown in Section 3.1.
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Figure 2: (a) Imperfect separation. Since the second source is not completely removed, the
total number of non-zero samples remains five. (b) Perfect separation. When the source is
recovered perfectly, the number of non-zero samples drops to two and the objective function
achieves its minimum.

Example: 2 sources and 2 mixtures. Two synthetic sources are shown in Figure 1(a,b).
The first source has two non-zero samples, and the second has three. The mixtures, shown
in Figure 1(c,d) are less sparse: they have five non-zero samples each. One can use this
observation to recover the sources. For example, we can express one of the sources as

Si(t) = 1(t) + pws ()

and chose p such as to minimize the number of non-zero samples ||5;|o, i.e. the Iy norm of
Si.

This objective function yields perfect separation. As shown in Figure 2(a), when g is
not optimal the second source interferes, and the total number of non-zero samples remains
five. Only when the first source is recovered perfectly, as in Figure 2(b), does the number of
non-zero samples drop to two, and the objective function achieve its minimum.

Note that the function ||5;||o is discontinuous and may be difficult to optimize. It is
also very sensitive to noise: even a tiny bit of noise would make all the samples non-zero.
Fortunately in many cases the [; norm ||3;||; is a good substitute for this objective function.
In this example, it too yields perfect separation.

Example: 3 sources and 2 mixtures. The signals are presented in Figure 3.

These sources have about 10% non-zero samples. The non-zero samples have random
positions, and are zero-mean unit-variance Gaussian distributed in amplitude. Figure 4
shows a scatter plot of the mixtures. The directions of the columns of mixing matrix are
clearly visible. This phenomena can be used in clustering approaches to source separation
(Pajunen et al., 1996; Zibulevsky et al., 2000). In this work we will explore a maximum a
posteriori approach.

3 Probabilistic Framework

In order to derive a maximum a posterior: solution, we consider the blind source separation
problem in a probabilistic framework (Belouchrani and Cardoso, 1995; Pearlmutter and
Parra, 1996). Suppose that the coefficients Cj in a source decomposition (4) are independent
random variables with a probability density function (pdf) of an exponential type

pi(Cix) oc exp —B;h(Cyr,) (5)
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Figure 3: Top three panels: sparse sources (sparsity is 10%). Bottom two panels: mixtures.

This kind of distribution is widely used for modeling sparsity (Lewicki and Sejnowski, 1998;
Olshausen and Field, 1997). A reasonable choice of h(c) may be

h(c) = || v>1 (6)

or a smooth approximation thereof. Here we will use a family of convex smooth approxima-
tions to the absolute value

hi(c) = |e] —log(1+ [c]) (7)
ha(c) = Mhi(e/N) (8)

with A a proximity parameter: hy(c) — |c| as A — 0.

We also suppose a priori that the mixing matrix A is uniformly distributed over the
range of interest, and that the noise £(¢) in (3) is a spatially and temporally uncorrelated
Gaussian process? with zero mean and variance o2.

3.1 Maximum a posteriori approach

We wish to maximize the posterior probability

rrAlaCXP(A,C|X) x rrAlaCXP(X|A,C’)P(A)P(C’) 9)

2The assumption that the noise is white is for simplicity of exposition, and can be easily removed.
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Figure 4: Scatter plot of two sensors. Three distinguished directions, which correspond to
the columns of the mixing matrix A, are visible.

where P(X|A, C) is the conditional probability of observing X given A and C. Taking into
account (3), (4), and the white Gaussian noise, we have

Xt — (ACD);)?

(
P(X|A — 1
(xX14,0) o Tlewp = 3 (10)
By the independence of the coefficients C); and (5), the prior pdf of C'is
P(C) o< [] exp(=8;h(Cji)) (11)
J:k

If the prior pdf P(A) is uniform, it can be dropped?® from (9). In this way we are left with
the problem
I%%XP(X|A,C) P(C). (12)

By substituting (10) and (11) into (12), taking the logarithm, and inverting the sign, we
obtain the following optimization problem

1
min 5[ AC® — X|[7 + 3 5h(Cj) (13)

j!k

where ||A||p = /X ;; A, is the Frobenius matrix norm.
One can consider this objective as a generalization of Olshausen and Field (1996, 1997)

by incorporating the matrix ®, or as a generalization of Chen et al. (1996) by including the
matrix A. One problem with such a formulation is that it can lead to the degenerate solution

3Otherwise, if P(A) is some other known function, we should use (9) directly.
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C =0 and A = oco. We can overcome this difficulty in various ways. The first approach is
to force each row A; of the mixing matrix A to be bounded in norm,

I|Ai]] <1 i=1,...,N. (14)
The second way is to restrict the norm of the rows C; from below

Il > 1 j=1,. M. (15)

A third way is to reestimate the parameters (; based on the current values of €. For
example, this can be done using sample variance as follows: for a given function A(-) in the
distribution (5), express the variance of Cjj as a function f,(/5). An estimate of 3 can be
obtained by applying the corresponding inverse function to the sample variance,

Bi=Fi (KT Y Ch) (16)
[

In particular, when h(c) = ||, var(c) = 2672 and

- 2
B = - 17
N =N (17)

Substituting A(-) and 3 into (13), we obtain
.1 23 [Cil

min T‘QHAC‘I’—XH%JFZ - (18)

J \/Kfl Xk ngk

This objective function is invariant to a rescaling of the rows of C' combined with a corre-
sponding inverse rescaling of the columns of A.

3.2 Experiment: more sources than mixtures

This experiment demonstrates that sources which have very sparse representations can be
separated almost perfectly, even when they are correlated and the number of samples is
small.

We used the standard wavelet packet dictionary with the basic wavelet symmlet-8. When
the signal length is 64 samples, this dictionary consists of 448 atoms i.e. it is overcomplete
by a factor of seven. Examples of atoms and their images in the time-frequency phase
plane (Coifman and Wickerhauser, 1992; Mallat, 1998) are shown in Figure 5. We used the
ATOMIZER (Chen et al., 1995) and WAVELAB (Buckheit et al., 1995) MATLAB packages
for fast multiplication by ® and ®7.

We created three very sparse sources (Figure 6(a)), each composed of only two or three
atoms. The first two sources have significant cross-correlation, equal to 0.34, which makes
separation difficult for conventional methods. Two synthetic sensor signals (Figure 6(b)) were
obtained as linear mixtures of the sources. In order to measure the accuracy of separation, we
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Figure 5: Examples of atoms: time-frequency phase plane (left) and time plot (right.)

normalized the original sources with ||S;||; = 1, and the estimated sources with ||S;||, = 1.
The error was computed as N
155 = Sl

15512
We tested two methods with this data. The first method used the objective function (13)
and the constraints (15), while the second method used the objective function (18). We used
PBM (Ben-Tal and Zibulevsky, 1997) for the constrained optimization. The unconstrained
optimization was done using the method of conjugate gradients, with the TOMLAB pack-
age (Holmstrom and Bjorkman, 1999). The same tool was used by PBM for its internal
unconstrained optimization.

We used hy(-) defined by (7) and (8) with A = 0.01 and ¢ = 0.0001 in the objective
function. The resulting errors of the recovered sources were 0.09% and 0.02% by the first
and the second methods, respectively. The estimated sources are shown in Figure 6(c). They
are visually indistinguishable from the original sources in Figure 6(a).

It is important to recognize the computational difficulties of this approach. First, the
objective functions seem to have multiple local minima. For this reason, reliable convergence
was achieved only when the search started randomly within 10%-20% distance to the actual
solution (in order to get such an initial guess one can use a clustering algorithm, as in
Pajunen et al. (1996) or Zibulevsky et al. (2000).)

Second, the method of conjugate gradients requires a few thousand iterations to converge,
which takes about 5 min on a 300 MHz AMD KG6-IT even for this very small problem.
(On the other hand, preliminary experiments with a truncated Newton method have been
encouraging, and we anticipate that this will reduce the computational burden by an order
of magnitude or more. Also Paul Tseng’s block coordinate descent method (unpublished
manuscript) may be appropriate.) Below we present a few other approaches which help to
stabilize and accelerate the optimization.

Error =

-100% (19)
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Figure 6: Sources, mixtures and reconstructed sources, in both time-frequency phase plane
(left) and time domain (right).

4 Equal number of sources and sensors: more robust
formulations

The main difficulty in a maximization problem like (13) is the bilinear term AC'®, which
destroys the convexity of the objective function and makes convergence unstable when opti-
mization starts far from the solution. In this section we consider more robust formulations
for the case when the number of sensors is equal to the number of sources, N = M, and the
mixing matrix is invertible, W = A~!

When the noise is small and the matrix A is far from singular, WX gives a reasonable
estimate of the source signals S. Taking into account (4), we obtain a least squares term
|C® — W X%, so the separation objective may be written

.1
min Zf|CO — WXL + 3 B(Cr) (20)
’ Jk
We also need to add a constraint which enforces the non-singularity of W. For example,
we can restrict its minimal singular value r,;,, (W) from below,

rmin(W) =1 (21)

It can be shown that in the noiseless case, o &~ 0, the problem (20)—(21) is equivalent to the
maximum a posteriori formulation (13) with the constraint ||A||s < 1. Another possibility
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Figure 7: Sources, mixtures and reconstructed sources, in both time-frequency phase plane
(left) and time domain (right).

for ensuring the non-singularity of W is to subtract K log|det W| from the objective

1
i K log]| det ¥+ 300 = W[ + 1 32 35h(C) 22
b ‘]’k
which (Bell and Sejnowski, 1995; Pearlmutter and Parra, 1996) can be viewed as a maximum
likelihood term.

When the noise is zero and ® is the identity matrix, we can substitute C' = WX and
obtain the BS Infomax objective (Bell and Sejnowski, 1995)

min —K log|det W[+ 8;((W X)) (23)
7.k

Experiment: equal numbers of sources and sensors. We created two sparse sources
(Figure 7, top) with strong cross-correlation of 0.52. Separation by minimization of the
objective function (22) gave an error of 0.23%. Robust convergense was achieved when we
started from random uniformly distributed points in C' and W'.

For comparison we tested the JADE (Cardoso, 1999a), FastICA (Hyvérinen, 1999) and
BS Infomax (Bell and Sejnowski, 1995; Amari et al., 1996) algorithms on the same signals.
All three codes were obtained from public web sites (Cardoso, 1999b; Hyvérinen, 1998;
Makeig, 1999) and were used with default setting of all parameters. The resulting relative
errors (Figure 8) confirm the significant superiority of the sparse decomposition approach.

This still takes a few thousands conjugate gradient steps to converge (about 5 min on a
300 MHz AMD K6). For comparison, the tuned public implementations of JADE, FastICA
and BS Infomax take only a few seconds. Below we consider some options for acceleration.
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Figure 8: Percent relative error of separation of the artificial sparse sources recovered by (1)
JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Equation 22.

5 Sequential Extraction of Sources via Quadratic Pro-
gramming

Let us consider finding the sparsest signal that can be obtained by a linear combination of the
sensor signals s = w? X. By sparsity we mean the ability of the signal to be approximated
by a linear combination of a small number of dictionary elements ¢y, as s ~ ¢! ®. This leads
to the objective

1
in S1T® — X+ 3 hiew) 20
’ k

where the term Y, h(c,) may be considered a penalty for non-sparsity. In order to avoid the
trivial solution of w = 0 and ¢ = 0 we need to add a constraint that separates w from zero.
It could be, for example,
2
Jwlz > 1, (25)

A similar constraint can be used as a tool to extract all the sources sequentially: the new
separation vector w’ should have a component of unit norm in the subspace orthogonal to
the previously extracted vectors w', ..., w/~!

11 =P Hul|l3> 1, (26)
where P7~! is an orthogonal projector onto Span{w!,..., w/ '}.
When h(ck) = |cx| we can use the standard substitution
c = c —¢c, c">0,

)

c >0
N S Y
¢ = <C> and @—(_@>
that transforms (24) and (26) into the quadratic program

1 A
min = ||¢T® — wl X2 + pele
w,é 2

subject to:  [|Jw|[z>1, ¢>0
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where e is a vector of ones.

6 Fast Solution in Non-overcomplete Dictionaries

In important applications (Tang et al., 1999, 2000a,b), the sensor signals may have hundreds
of channels and hundreds of thousands of samples. This may make separation computa-
tionally difficult. Here we present an approach which compromises between statistical and
computational efficiency. In our experience this approach provides high quality of separation
in reasonable time.

Suppose that the dictionary is “complete,” i.e. it forms a basis in the space of discrete
signals. This means that the matrix ® is square and non-singular. As examples of such a
dictionary one can think of the Fourier basis, Gabor basis, various wavelet-related bases, etc.
We can also obtain an “optimal” dictionary by learning from given family of signals (Lewicki
and Sejnowski, 1998; Lewicki and Olshausen, 1999; Olshausen and Field, 1997, 1996).

Let us denote the dual basis

U =0¢" (27)

and suppose that coefficients of decomposition of the sources
C =5V (28)

are sparse and independent. This assumption is reasonable for properly chosen dictionaries,
although of course we would lose the advantages of overcompleteness.
Let Y be the decomposition of the sensor signals

Y = XU (29)

Multiplying both sides of (3) by ¥ from the right and taking into account (28) and (29), we
obtain
Y =AC+(, (30)

where ¢ = £V is the decomposition of the noise. Here we consider an “easy” situation, where
¢ is white, which assumes that W is orthogonal. We can see that all the objective functions
from the sections 3.1-5 remain valid if we substitute the identity matrix for ® and replace the
sensor signal X by its decomposition Y. For example, the maximum a posteriori objectives
(13) and (18) are transformed into

W 55140 = VI + T (O (1)
and 1 ) 25 1Ciul
min ﬁHAC—YHF?L%:m (32)
The objective (22) becomes
min —K log|det 7] + Z[IC = WY + 1 3 B(C) (33)

gk
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Figure 9: Separation of musical recordings taken from commercial digital audio CDs (five
second fragments).

In this case we can further assume that the noise is zero, substitute C' = WY, and obtain
the BS Infomax objective (Bell and Sejnowski, 1995)

min —K log | det W] + > BiR(WY)r)
7.k

(34)

Also other known methods (for example, Lee et al. (1998); Lewicki and Sejnowski (1998)),
which normally assume sparsity of source signals, may be directly applied to the decomposi-
tion Y of the sensor signals. This may be more efficient than the traditional approach, and
the reason is obvious: typically, a properly chosen decomposition gives significantly higher
sparsity for the transformed coefficients than for the raw signals. Furthermore, independence
of the coefficients is a more realistic assumption than independence of the raw signal samples.

Experiment: musical sounds. In our experiments we artificially mixed seven 5-second
fragments of musical sound recordings taken from commercial digital audio CDs. Each of
them included 40k samples after down-sampling by a factor of 5. (Figure 9).

The easiest way to perform sparse decomposition of such sources is to compute a spectro-
gram, the coefficients of a time-windowed discrete Fourier transform. (We used the function
SPECGRAM from the MATLAB signal processing toolbox with a time window of 1024
samples.) The sparsity of the spectrogram coefficients (the histogram in Figure 10, right) is
much higher then the sparsity of the original signal (Figure 10, left)

In this case Y (29) is a real matrix, with separate entries for the real and imaginary
components of each spectrogram coefficient of the sensor signals X. We used the objective
function (34) with 8; = 1 and hy () defined by (7) and (8) with the parameter A = 10~*.
Unconstrained minimization was performed by a BFGS Quasi-Newton algorithm (MATLAB
function FMINU.)
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Figure 10: Histogram of sound source values (left) and spectrogram coefficients (right), shown
with linear y-scale (top), square root y-scale (center) and logarithmic y-scale (bottom).

This algorithm separated the sources with a relative error of 0.67% for the least well
separated source (error computed according to (19).) We also applied the BS Infomax
algorithm (Bell and Sejnowski, 1995) implemented in Makeig (1999) to the spectrogram
coefficients Y of the sensor signals. Separation errors were slightly larger, at 0.9%, but the
computing time was improved (from 30 min for BFGS to 5 min for BS Infomax).

For comparison we tested the JADE (Cardoso, 1999a,b), FastICA (Hyvérinen, 1999,
1998) and BS Infomax algorithms on the raw sensor signals. Resulting relative errors (Fig-
ure 11) confirm the significant (by a factor of more than 10) superiority of the sparse de-
composition approach.

The method described in this section, which combines a spectrogram transform with the
BS Infomax algorithm, is included in the ICA/EEG toolbox (Makeig, 1999).

7 Future research

We should mention an alternative to the maximum a posteriori approach (12). Considering
the mixing matrix A as a parameter, we can estimate it by maximizing the probability of
the observed signal X

max [P(X|A) = [ P(x]4,0) P(C)dC

The integral over all possible coefficients C' may be approximated, for example, by Monte-
Carlo sampling or by a matching Gaussian, in the spirit of Lewicki and Sejnowski (1998);
Lewicki and Olshausen (1999) or by variational methods (Jordan et al., 1999). It would be
interesting to compare these possibility to the other methods presented in this paper.
Another important direction is towards the problem of simultaneous blind deconvolution
and separation, as in Lambert (1996). In this case the matrices A and W will have linear
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Figure 11: Percent relative error of separation of seven musical sources recovered by (1)
JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Infomax, applied to the spectrogram
coefficients, (5) BFGS minimization of the objective (34) with the spectrogram coefficients.

filters as an elements, and multiplication by an element corresponds to convolution. Even in
this matrix-of-filters context, most of the formulae in this paper remain valid.

8 Conclusions

We showed that the use of sparse decomposition in a proper signal dictionary provides high-
quality blind source separation. The maximum a posterior: framework gives the most general
approach, which includes the situation of more sources than sensors. Computationally more
robust solutions can be found in the case of an equal number of sources and sensors. We can
also extract the sources sequentially using quadratic programming with non-convex quadratic
constraints. Finally, much faster solutions may be obtained by using non-overcomplete
dictionaries. Our experiments with artificial signals and digitally mixed musical sounds
demonstrate a high quality of source separation, compared to other known techniques.
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