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ABSTRACT

Blind source separation (BSS) decomposes a multidi-
mensional time series into a set of sources, each with
a one-dimensional time course and a fixed spatial dis-
tribution. For EEG and MEG, the former corresponds
to the simultaneously separated and temporally over-
lapping signals for continuous non-averaged data; the
latter corresponds to the set of attenuations from the
sources to the sensors. These sensor projection vec-
tors give information on the spatial locations of the
sources. Here we use standard Neuromag dipole-fitting
software to localize BSS-separated components of MEG
data collected in several tasks in which visual, audi-
tory, and somatosensory stimuli all play a role. We
found that BSS-separated components with stimulus-
or motor-locked responses can be localized to physio-
logical and anatomically meaningful locations within
the brain.

1. INTRODUCTION

Blind source separation (BSS) algorithms, such as In-
fomax (Bell and Sejnowski, 1995), second-order blind
identification (SOBI) (Belouchrani et al., 1993), and
fICA (Hyvarinen and Oja, 1997) have been applied suc-
cessfully to electroencephalography (EEG) and mag-
netoencephalography (MEG) data resulting in several
important technical and scientific advances. These al-
gorithms can separate neuronal activity from various
artifacts (Makeig et al., 1996; Vigario et al., 1998; Jung
et al., 1998; Tang et al., 1999), such as eye-blinks,
which often cause fairly large amounts of data to be dis-
carded. In contrast with methods that rely on the use
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of a template, BSS removes these artifacts without any
prior assumptions about the nature of the waveforms.
Another technical improvement is that BSS-separated
sources are sufficiently clean to show evoked responses
in single trials (Jung et al., 1999; Tang et al., 2000).
When coupled with the millisecond temporal precision
of the EEG or MEG, this capability to perform single
trial analysis permits the study of the precise timing of
populational neuronal evoked responses (Tang et al.,
2000) and allows one to distinguish between the ab-
sence of rhythmic activity and the absence of phase-
locked rhythmic activity (Makeig et al., 1999a).

Since each of the BSS-separated components has
a sensor projection, one can attempt to localize the
generator(s) that give rise to the sensor projection
by finding the best fitting dipole(s) using a forward
model. Thus far, localization of BSS-separated com-
ponents has not been attempted. Due to distortion
and reduction of low spatial frequencies of the elec-
tric field signal by the skull, localization of generators
from EEG data is ill posed. Consequently, it is difficult
to relate the EEG independent components to specific
neuronal populations in specific brain structures. In
fact, researchers have carefully avoided making neu-
roanatomical interpretations of BSS-separated compo-
nents (Makeig et al., 1996, 1997, 1999b). In magnetoen-
cephalography, the magnetic field penetrates the skull
with little distortion (Williamson and Kaufman, 1981).
The precision of spatial localization of neural magnetic
sources can be on the order of a few millimeters un-
der optimal conditions and such localization has been
performed routinely in both basic research and clini-
cal studies (George et al., 1995). Given MEG’s spatial
resolution, it seems reasonable to map BSS-separated
MEG components to neuronal populations within spe-
cific brain structures by localizing these components.

Associations between the BSS-separated compo-
nents and underlying brain structures have been sug-



gested by the components’ temporal profiles and the
spatial patterns of their sensor projections (Tang et al.,
2000). These associations are qualitative. In this pa-
per, we use the standard Neuromag source modeling
software to localize BSS-separated components as sin-
gle ECDs, which provides a quantitative association be-
tween BSS-separation components and neuroanatomi-
cal areas.

2. METHODS

We tested four right-handed subjects (2 females and
2 males) in four visual reaction time tasks (90 or 270
trials per task). During these tasks, a pair of colored
abstract forms were presented on each half of the dis-
play screen, one of which was the target. The subject
was instructed to press either the left or right button
when the target appeared on the left or right respec-
tively. In all tasks, the target was never described to
the subject prior to the experiment. The subject was
to discover the target by trial and error using auditory
feedback (low and high tones corresponded to correct
and incorrect responses, respectively). All subjects dis-
covered the rule within a few trials. The tasks differed
in the difficulty with which the target could be deter-
mined and in their potential dependency on a partic-
ular brain structure. For the purpose of this paper,
intra-task differences will not be discussed. The goal
of this paper is to investigate whether BSS can separate
components that correspond to focal neuronal popula-
tions during tasks that involve natural multi-modality
sensory stimulation.

Blind separation by SOBI (Belouchrani et al., 1993)
was performed on 122-channel continuous data sam-
pled at 300Hz band-filtered at 1-100Hz, (see Tang
et al. (1999, 2000)). For all 122 recovered compo-
nents, stimulus- or response-locked averages were cal-
culated. Components with signal-to-noise ratios below
a threshold value of 2.5 were not considered for this
analysis. Typically, there are no more than 20 compo-
nents in each experiment that had peaks in stimulus-
or response-locked averages with S/N ratios above this
threshold. For this small subset of components, dipole
fitting was performed to localize a potential generator.
We used the Neuromag bundled software for this single
ECD fitting.

We expected visual, auditory, and somatosensory
components to be separated because the tasks involve
visual stimulus presentation, auditory feedback, and
somatosensory stimulation due to a button press. So-
matosensory sources were identified by a peak response
between 20 and 50ms after the button press. Vi-
sual sources were identified by a peak response be-

x10™ subject3 tp 007
-0.6 T T

—08l

12

14

fTiem

1)

22 L L L L L L
~800 -600 -400 -200 200 400 600 800

0
Time (ms)

Figure 1: Localization of BSS-separated somatosen-
sory component, (Subject 3 Source 007). (top). Event-
locked average for the component. Single trials (90)are
aligned by the button press and then averaged. (mid-
dle) Contour plots of the field maps (left, dorsal, and
right view). (bottom) component localized as a single
ECD, superimposed on the MRIs. Radiologic conven-
tion: left on the right and right on the left.

tween 70 and 140ms. Auditory sources (auditory feed-
back triggered by button press) were identified by a
peak response between 50 and 140ms after the button
press. Although for each sensory modality multiple cor-
tical areas supporting primary and secondary process-
ing have been identified, and poly-sensory areas have
also been detected using MEG, for the purpose of this
paper we focused on neuronal populations within the
primary visual, auditory, and somatosensory cortices
rather than on secondary sources.

3. RESULTS

SOBI-separated somatosensory, visual, and auditory
components are shown in event-locked averages and
contour plots along with fitted dipoles super-imposed
on MRI images (3 of the 4 subjects had MRI). All com-
ponents included in the analysis were first screened by
their S/N ratio (> 2.5) and then by the confidence
volumes of their dipole fits (< 10mm?). Somatosen-
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Figure 2: Localization of BSS-separated somatosensory
component (Subject 1 Source 010).

sory Sources. We were able to identify components
with button-press-locked responses having latencies of
38.3 £ 4.8ms, and with dipoles localized to the hand
region of the somatosensory cortex (Fig. 1, 2, and 3),
which indicates their somatosensory origin. In all three
subjects, we show a fitted dipole in the right hemi-
sphere (bottom panels). Because a thumb button press
was required and thumb movement should stimulate
the median nerve, it was expected that these putative
somatosensory components would be localized in the
same region that is normally activated by median nerve
stimulation (Hari and Forss, 1999).

The goodness of fits for these BSS-separated com-
ponents were 73.6 + 8.36%. These fits are far superior
to the 40.7 + 5.4% of somatosensory sources modeled
using the event-locked average from the best sensor, the
conventional method. Compared to the goodness of fits
reported in the literature for median nerve stimulation,
these numbers may appear to be low. However this is
to be expected, because, unlike the precisely controlled
median nerve stimulation, the somatosensory sources
modeled here reflect the more natural and more vari-
able stimulation of the larger somatosensory area in-
volved during the thumb button-press.

Visual Sources. Early visual responses to colored
arbitrary forms with a latency of 109.47 £ 10.4ms were

Figure 3: Localization of BSS-separated somatosensory
component (Subject 2 Source 012).

identified. Fig. 4 shows one such component local-
ized to the occipital lobe, consistent with the litera-
ture (Aine et al., 1995; Hashimoto et al., 1999; Portin
et al., 1999). Across subjects, the precise location of
this source within the occipital lobe differs: some are
more medial and some more dorsal. The goodness of
fits are 76.0 + 3.1%, much better than the goodness of
fits of 65.8+5.02% for the same type of sources modeled
using the conventional procedure.

Auditory Sources.  Auditory responses to the
low /high tone feedback with peak latencies of 101.5 £
18.0ms were found for a subset of tasks. This audi-
tory component can be localized to the primary au-
ditory cortex in the lateral fissure. Fig. 5 shows one
such localized auditory source. The goodness of fit is
59.3 + 5.7%, which is poorer than the somatosensory
and visual sources. This is reasonable given the relative
insignificance of auditory processing during a large por-
tion of the task. The goodness of fit is also poor when
compared to the literature (over 90%). The small num-
ber of trials (90) and lack of explicit attention could
both contribute to this difference. Using conventional
methods, we failed to identify any auditory responses
at all in the event-locked average from the best sen-
sor. Therefore, using BSS, we can identify and localize
sources that are not identifiable at all using previous
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Figure 4: Localization of BSS-separated visual compo-
nent. Same as Fig.1 through Fig. 3 but responses were
locked onto visual stimulus onset (Subject 1 Source
027.)

methods.

4. DISCUSSION

We analyzed a data set from four tasks originally de-
signed for a memory study. Each of the tasks in-
volves sensory stimulation from visual, auditory, and
somatosensory modalities which interact in a “natu-
ral” context. In contrast to isolated stimulation of
each sensory modality using extremely well controlled
stimuli, such as visual forms with very small visual an-
gle, median nerve stimulation, and pure tones deliv-
ered monaurally, the visual stimuli used in this study
have large visual angles, the somatosensory stimuli to
the thumb and the associated muscles and nerves were
generated by the subject’s own button presses, and the
auditory stimuli were provided binaurally as a conse-
quence of (and as feedback for) the button-press motor
action. The responses to these sensory stimuli were
strongly modulated by task demands, such as differ-
ential attention to different sensory modalities. Ini-
tially attention was directed to visual stimulation, but
as soon as a button press response was made the sub-
ject needed to direct attention to the auditory stimulus
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Figure 5: Localization of BSS-separated auditory com-
ponent. (Subject 1 Source 011.)

to determine whether the response was correct. At-
tention to auditory feedback became unnecessary after
the subject discovered which stimulus was the target
using the auditory feedback (low versus high frequency
tones). Processing of somatosensory stimulation due
to button-presses was never an explicit part of the task
and received no explicit attention. This type of atten-
tional shift from one sensory modality to another em-
bodies another aspect of natural sensory information
processing.

One difficulty in studying sensory processing in such
complex “natural” tasks is that stimulation to each
modality was embedded in the context of the stimu-
lation of another modality and also in the context of
motor action. The close temporal proximity among
neuronal responses associated with these multiple sen-
sory modalities and the motor response make the sepa-
ration and identification of signals arising from distinct
neuronal populations difficult to accomplish. Event-
related field generators are typically modeled by first
selecting single response peaks in single channel wave-
forms. Using this method, if two generators have over-
lapping peaks, separation becomes impossible. An-
other difficulty in studying these types of tasks is the
variability in the focus of attention throughout the task
and across modalities, and variability in the states of



processing associated with each modality which may
serve to prime the subsequent processing. These vari-
abilities reduce the S/N ratio, therefore requiring aver-
aging over a large number of trials. These difficulties
may have contributed to the fact that to date most
studies of sensory processing with MEG have been con-
ducted under either more controlled or single modality
stimulation.

We take advantage of one particular blind source
separation algorithm which utilizes information avail-
able in the fine temporal structures of the signals asso-
ciated with different underlying field generators. The
process of identifying or separating neuronal sources
does not involve signal averaging across trials, nor does
it require the subsequent identification of a peak re-
sponse from potentially overlapping peaks in the aver-
aged sensor signals. Instead, continuous non-averaged
data are provided as input to the algorithm which gen-
erates multiple one-dimensional time series (i.e. com-
ponents.) Each component potentially corresponds to
some magnetic field generator(s). The algorithm out-
puts as many such components as there are sensors in
the data acquisition system. Those with stimulus- or
motor-locked responses are candidates for being neu-
ronal generators. Those with responses locked onto
other external events, such as eye-blinks or heart beats
detected using EOG and EKG, are considered known
noise sources. The rest remain as generators from un-
known noise sources that are not task related. Along
with the time series for each component, the algo-
rithm also generates a field map for each component,
which shows how strongly the putative generator can
influence each sensor. When the pattern of the field
map agrees with known neuronal generators and when
the time course of the component matches that of the
same generator based on past MEG studies and other
neuroanatomical constraints, the components are con-
sidered to reflect the activity of a neuronal genera-
tor (Tang et al., 2000). Following such a procedure,
neuronal and non-neuronal generators with temporally
overlapping responses have been separated and identi-
fied (Tang et al., 1999, 2000). Because the algorithm
simultaneously separates noise from neuronal compo-
nents, the time series of the neuronal components is
much cleaner than the sensor time series. When per-
forming event-locked averages using the separated com-
ponents, fewer trials should be needed than when using
the sensor time series.

We obtained MRIs for each individual subject and
used standard Neuromag software to model the compo-
nents with single equivalent current dipole (ECD). The
input to the software is the field pattern and the out-
put is the location of the ECD projected onto the sub-

ject’s MRI. From the earlier discussed complex tasks,
we were able to separate and identify visual, auditory,
and somatosensory components that show appropriate
event-locked responses with response latencies consis-
tent with past literature. Despite the large variabil-
ity associated with stimulation induced by the sub-
jects’ self-directed button presses, somatosensory com-
ponents with an average peak latency of approximately
40ms were identified. Since this somatosensory stimu-
lation was caused by a thumb button-press, the compo-
nents are localized to the same region where sources for
median nerve stimulation have been found (Hari and
Forss, 1999). Despite the lack of strong attentional de-
mand and the rapidly reducing attentional demand for
auditory stimuli during the course of the experiments,
auditory components were identified with an average
peak latency of approximately 100ms and were local-
ized to the vicinity of the lateral fissure, consistent with
previous studies (Cansino et al., 1994). Finally, despite
the large visual angles of the visual stimuli, early vi-
sual components were localized to regions within the
occipital lobe with an average peak latency of approxi-
mately 110ms across four subjects, which is also consis-
tent with previous studies (Aine et al., 1995; Hashimoto
et al., 1999; Portin et al., 1999).

Establishing that BSS-separated components are
not simply an arbitrary combination of multiple dis-
contiguous neuronal sources but can in fact be local-
ized to meaningful brain regions is only the first step in
demonstrating the usefulness of BSS algorithms. The
next question is whether BSS provides any advantages
in source localization. In principle, one could expect
improved source localization because BSS simultane-
ously separates known and unknown sources of noise
from neuronal components. The BSS-separated neu-
ronal components are cleaner than the raw sensor data,
and therefore should have better S/N ratios and better
precision of localization in terms of goodness of fit. We
compared localized sources from BSS-separated com-
ponents and from original sensor data. Our results
showed that (1) while for some sensory modalities, such
as the auditory system, the conventional analysis pro-
cedure completely failed to identify any dipole sources
at all due to a failure to detect peaks in the averaged
sensor signal, BSS-separated components correspond
clearly to neuronal activity originating in primary au-
ditory cortex in terms of their response latencies and
their source locations; (2) When the conventional anal-
ysis method does result in localization of dipole sources,
the BSS-separated sources always have fitted dipoles
with greater goodness of fit than dipoles fitted to the
averaged sensor data. These observations suggest that
BSS can serve to improve source localization by im-



proving goodness of fit and in identifying dipoles under
challenging experimental conditions (low sensor S/N
ratios). BSS can be viewed as a pre-processor to any
existing source localization method. The next step is to
systematically study the effect of BSS on source local-
ization when combined with more sophisticated source
localization algorithms than single ECD modeling.

Through the application of a BSS algorithm to
MEG data, we have previously shown that (1) BSS
is capable of separating various artifacts from neuronal
sources (Tang et al., 1999); (2) BSS is capable of sep-
arating neuronal sources at different processing stages
along the visual pathways; and (3) BSS is capable of
supporting single-trial analysis (Tang et al., 2000). In
this paper, we show that BSS-separated components
can be further localized to meaningful spatial locations
within the brain. Localization of BSS-separated com-
ponents provides the critical link between the indepen-
dent components and their corresponding generators in
the brain. This link allows us to relate functions, re-
vealed by responses in time, to structures specified in
space.
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